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[1] http://vision03.csail.mit.edu/cnn_art/index.html

[1]

http://vision03.csail.mit.edu/cnn_art/index.html
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[1] http://vision03.csail.mit.edu/cnn_art/index.html [2] https://www.flickr.com/   #cat  

[1]

[2]

- ConvNets are not spatial invariant,
need to include: scale, rotations, translations 

Very expensive for 
medical images ⚠

http://vision03.csail.mit.edu/cnn_art/index.html
https://www.flickr.com/
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ConvNets CapsNets

Layer pooling ---

Process scalar vector

Optimization backpropagation routing-by-agreement

Loss cross-entropy margin + reconstruction

Summary of differences:
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ConvNets CapsNets

Layer pooling ---

Process scalar vector

Optimization backpropagation routing-by-agreement

Loss cross-entropy margin + reconstruction

Summary of differences:

||vk|| > 0.9 -> instance is present
||vk|| < 0.1 -> instance is absent

Margin loss:
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CapsNets are designed to learn the pose of the instance along its presence. Consequently, 

less variations of the instance (fewer annotated images) are needed.  

Medical datasets are often small and highly imbalanced.
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We argue that CapsNet will perform better than ConvNets under medical data challenges.
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We argue that CapsNet will perform better than ConvNets under medical data challenges.

(1) How do networks behave under decreasing amounts of training data?

(2) Is there a change in their response to class-imbalance?

(3) Is there any benefit from data augmentation as a complementary strategy?

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus           Capsule Networks against Medical Imaging Data Challenges



DATASETS

Methods

20

i) Mitosis detection (TUPAC16) [1]
ii) Diabetic retinopathy detection (DIARETDB1) [2]
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[1] Tumor Proliferation Assessment Challenge 2016 
(TUPAC16 http://tupac.tue-image.nl/)

[2] Standard Diabetic Retinopathy Database - Calibration level 1 
(DIARETDB1 http://www.it.lut.fi/project/imageret/diaretdb1/)

http://tupac.tue-image.nl/
http://www.it.lut.fi/project/imageret/diaretdb1/
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i) Mitosis detection (TUPAC16) ii) Diabetic retinopathy detection (DIARETDB1)

iii) Handwritten Digit Recognition (MNIST) [1] iv) Clothes Classification (Fashion-MNIST) [2]

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus           Capsule Networks against Medical Imaging Data Challenges

M
ito

si
s

H
ea

lth
y

A
bn

or
m

al
H

ea
lth

y

Coat T-shirt/top Sneaker Ankle boot Dress

Trousers Bag Shirt Pullover Sandal

[1] MNIST database of handwritten digits 
(MNIST  http://yann.lecun.com/exdb/mnist/)

[2] Zalando’s article images dataset  (Fashion-MNIST 
https://github.com/zalandoresearch/fashion-mnist)

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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ConvNets (LeNet, Baseline) CapsNet
# params: 60 K, 35.4 M
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# params: 8.2 M
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● CapsNet performs overall better than ConvNets (LeNet & Baseline).

CapsNet

Baseline

LeNet
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● CapsNet performs overall better than ConvNets (LeNet & Baseline).
● The gap is higher for small amount of data (MNIST).

CapsNet

Baseline

LeNet
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● CapsNet performs overall better than ConvNets (LeNet & Baseline).
● The gap is higher for small amount of data (MNIST).
● Improvement is limited in more complex dataset (TUPAC16).
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● CapsNet performs overall better than ConvNets (LeNet & Baseline).
● The gap is higher for small amount of data (MNIST).
● Improvement is limited in more complex dataset (TUPAC16).
● All our experiments validated the significance test with a p-value < 0.05 (except for TUPAC16).
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Take home messages:
- CapsNet requires less images for a better performance.
- Behaviour can change for different datasets.
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Unbalanced 1

Unbalanced 2

Balanced

● CapsNet surpasses performance of ConvNets for all cases, except for Fashion-MNIST.
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Unbalanced 1

Unbalanced 2

Balanced

● CapsNet surpasses performance of ConvNets for all cases, except for Fashion-MNIST.
● At least one of the unbalanced cases verified the significance test for all datasets.
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Take home message:
- CapsNet is more robust to imbalance in the class distribution.
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With

Without

● CapsNet without data augmentation performs … than ConvNets using data augmentation.
○ similarly (TUPAC16, MNIST, Fashion)
○ better (DIARETDB1)
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With

● CapsNet without data augmentation performs … than ConvNets using data augmentation.
○ similarly (TUPAC16, MNIST, Fashion)
○ better (DIARETDB1)

● All results were found significant.

Without

CapsNet

Baseline

LeNet
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With

Take home message:
- CapsNet learns a stronger representation with less variability of the data.

Without

CapsNet

Baseline

LeNet



Conclusion

42

+ Equivariance modeling, requires to see fewer 

viewpoints of the instance of interest.

+ Allows to reduce the number of parameters 

for a comparable performance.

+ CapsNet improves CADx classification 

performance under medical data challenges.
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- Routing-by-agreement is slower than 

backpropagation (≈ convergence time).

- Improvement is limited in more complex 

datasets (TUPAC16).

- Reconstructions are blurry for medical 

datasets with complex backgrounds.
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➥ Fully convolutional decoder to handle complex backgrounds. 

➥ Explore CapsNets in a semi-supervised or unsupervised framework.

➥ Investigate the latent space to improve explainability and interpretability.

➥ Look into more suitable medical datasets, in which neighborhood structure plays a role for diagnosis.



ACKNOWLEDGEMENT

44

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673. 

Amelia Jiménez-Sánchez has received financial support through the ‘‘la Caixa’’ INPhINIT 
Fellowship Grant for Doctoral studies at Spanish Research Centres of Excellence, ‘‘la 
Caixa’’ Banking Foundation, Barcelona, Spain.

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus           Capsule Networks against Medical Imaging Data Challenges



Thank you for your attention!

Amelia Jiménez-Sánchez
amelia.jimenez@upf.edu
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